

Image Provided By DCS Design

Kingstowne Section 36A Office Building with Parking Garage

PSU AE Senior Thesis April 8, 2013

Fairfax County, VA

James Chavanic Structural

Image Provided By DCS Design

Image Provided By DCS Design

Presentation Outline

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

Image Provided By DCS Design

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

BUILDING OVERVIEW

- 200,000 SF
- 8 Stories (4 Parking, 4 Office)
- Height = 101'-2" (86'-11" from Avg. Grade)
- \$ 19 Million
- Construction: February 2012 May 2013

PROJECT TEAM

Owner: Halle Architect: GC: Civil Eng.: Mech. Eng.: Struct. Eng.:

PROJECT INFORMATION

- Owner: Halle Companies
 - ct: Davis, Carter, Scott Ltd. (DCS Design) L.F. Jennings Inc.
 - g.: Tri-Tek Engineering
 - Eng.: Jordan & Skala Engineers
 - Eng.: Cagley & Associates

Image From Bing Maps

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

Site Relationship

Original Images: DCS Design

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

ROOF

- Spans

EXISTING STRUCTURE

3.25" LW Concrete on 2" 18 GA Composite Deck (Mech. Areas)

• 3" x 20 GA Type N Roof Deck (Remaining Areas)

■ A-C 45′-0″, C-D 36′-6″, D-F 43′-6″ East West Direction 28'-6"

Composite action in mechanical areas

(4) 17,000 lb. Roof-top Mechanical Units

Original Image: Cagley & Associates

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

- 2" x 18 GA Composite Deck 3.25" LW Concrete Topping (3000 psi) Spans

- A-C 45'-0" , C-D 36'-6" , D-F 43'-6" East West Direction 28'-6"
- Composite action beams and girders 13'-4" Floor to floor height

EXISTING STRUCTURE

OFFICE LEVELS 2 THROUGH 4

- Lateral System
 - Moment Frames
 - Concentrically Braced Frames
 - Eccentrically Braced Frames

Original Image: Cagley & Associates

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

- 8" Thick concrete flat slab
 - #4 @ 12" O.C. Bottom Mat
- f'_c = 5000 psi
- Typical bay is 28'-6" x 29'-0"
- 24" x 24" Typical columns
- 10-8" Floor to floor height
- Lateral System

EXISTING STRUCTURE

PARKING LEVELS AND OL1

- 12 Shear walls
- 12" Thick
- f'_c = 5000 psi
- #5 @ 12″ O.C. Typical E.F.

Original Image: Cagley & Associates

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

- All Concrete f'c = 3000 psi
- 48" Thick concrete mat foundations
- Spread Footings
- Strip Footings 2500 psi bearing capacity

EXISTING STRUCTURE

FOUNDATION

- 7000 psi bearing capacity
- 8' x 8' to 16' x 24'

 Geopiers (Rammed Aggregate Piers) ■ 30" Dia. 16' deep 100 k capacity each

Original Image: Cagley & Associates

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

SETTING THE STAGE

- Currently, no tenant selected
- Police / Emergency services for Fairfax County, VA
- Risk Category IV (Originally Category II)
- U.S. Department of Defense Standards

Proposed Work

E STAGE

www.defense.gov

www.gsa.gov

www.asce.org

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

STRUCTURAL DEPTH

- Reinforced concrete
- Maintain flat slab system
- Gravity Design
 - Use designed OL1 for OL2 OL4
 - Design edge beams
 - Design roof structure
- Lateral Design
 - Ordinarily reinforced concrete shear walls
- Progressive Collapse Design
 - Satisfy requirements adopted by the U.S. Dept. of Defense
- Goals
 - Reduce cost of structural system
 - Simplify construction

PROPOSED WORK

BREADTH 1: SITE REDESIGN

- Assess potential security issues
- Goal
 - Reduce risks to human occupants

BREADTH 2: FACADE REDESIGN

- Design glazing for worst scenario from site redesign
- Goals
 - Protect occupants of the building
 - Maintain thermal performance

MAE REQUIREMENTS

- AE 530 Computer Modeling of Building Structures
- AE 538 Earthquake Engineering
- AE 542 Building Enclosure Science and Design

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

GRAVITY SYSTEM

- 2 way flat slab
 - Office levels
 - Significantly cheaper than existing steel system
 - Reduces floor-to-floor height
- Perimeter edge beams
 - Creates moment frames
- All columns continued from parking levels through office levels 2 additional column lines
- Check strength of existing column designs Higher loads

GRAVITY **D**ESIGN

Depth constrained to allowed structure plenum

DESIGN CONSIDERATIONS

- Risk Category IV ■ I_{snow} = 1.2
- All Concrete $f'_c = 5000 \text{ psi}$
- Façade Load
 - Assume 100 psf
- Floor to floor height
 - 9'-0" Floor to ceiling
 - 17" Clear space in existing Office structure
 - Provide 24" below flat slab
 - 8" slab system
 - Result = 11′-8″
 - Reduce overall by 7'-8"

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

DESIGN OF EDGE BEAMS

- GSA Design Guide Appendix B.3
- 9'-0" Tributary Width
- 20" Trial Depth (2.5*h)
 - Gives sufficient beam/slab ratio
- ACI Moment Coefficients
- Frame Analysis

GRAVITY **D**ESIGN

■ 2(DL + 0.5L)

- East West direction
- North South direction
- Pattern Loading

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

DESIGN/CHECK OF COLUMNS

- GSA Design Guide Appendix B.3
- Live load reduction considered
- Spliced at OL1
 - "Check" below
- Unbalanced moment from slabs
- Spreadsheet

 - Highest load columns
- Typically 129% of Original A_s

GRAVITY **D**ESIGN

■ 2(DL + 0.5L)

- "Design" above
- Typical columns

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

SOIL LOAD

WIND LOAD

- 120 MPH (Cat. IV)
- Exposure B
- GC_{ni}
 - Office = 0.18
 - Parking = 0.55
- Cont. Base Shear
 - 765 k
 - North Blowing

SEISMIC LOAD

- Site Class = D
- I_{seismic} = 1.5
- SDC = C
- R = 5 (ORC Walls)
- $C_s = 0.0249$
- Weight = 39,017 k
- Base Shear
 - 972 k

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

ETABS MODEL

- All elements modeled
- Idealize parking levels
- Total height = 91'-4"
- Effects of cracked sections
- Rigid diaphragms
- Columns in-line with walls
- Walls
- Seismic loads control

LATERAL DESIGN

- Membrane elements
- 18" x 18" maximum mesh
- Extreme torsional irregularity N-S direction

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

9	SH	EA	R
		SV	V7
		SV	V1
		SV	V 5
		SV	V 4
			9

LATERAL DESIGN

WALL DESIGN

- SW12 (Same Design)
- SW7 Worst Case
- Seismic N-S Controls
- Primarily Soil Load
- SW3 (Same Design)
- SW1 Worst Case
- Seismic N-S Controls
- , SW6
- Not in scope
- Architectural interference
- Seismic E-W Controls

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

LATERAL DESIGN (SW4)

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

S	Η	E	A	F

Ope
Ope

LATERAL DESIGN (SW4)

R WALL DESIGN

- nings
- 105" Tall
- 54″ Wide
- Increased Reinforcement
- Coupling Beams
 - 35″ Deep
 - ACI 318-11 21.9.7
 - Diagonal Reinforcement
 - Transverse Reinforcement
 - Tight Curtain
- Increase Boundary Reinforcement Intersection w/ SW2 and SW3

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

FOUNDATION IMPACT

K ON TYPICAL SPREAD FOOTING

- Gravity and Lateral Considered
 - Free Columns
 - Negligible Lateral Influence
 - Boundary Columns
 - High Lateral Influence
- Footing at C-1.5 Checked
 - ASD Combo (D + 0.75L + 0.75S) = 1165 k
 - 11'-0" × 11'-0"
 - Assuming 9 Geopiers
- Results
 - 12'-0" x 16'-0" (58% Inc.)
 - 12 Geopiers (33% Inc.)

4' 4' 1 30" DIA. GEOPIER –

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

PROPRESSIVE **C**OLLAPSE **D**ESIGN

- Load Combo $W_f = 1.2D + 0.5L$
 - Internal Ties (3W_fL_i)
 - Peripheral Ties (6W_fL_iL_p)
 - Vertical Ties (A_TW_f)

REQUIREMENTS

- UFC 4-023-03
 - Occupancy Category IV
 - Tie Force Method
 - Alternative Path Method
 - Enhanced Local Resistance

TIE-FORCE METHOD

• $\phi R_n = \phi \Omega A_s F_v$

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

PROPRESSIVE **C**OLLAPSE **D**ESIGN

- Load Combo [(0.9 or 1.2)D + (0.5L or 0.2S)]
 - Increase at "Collapse" Bays (x 1.83)

- Hinge Properties Calculated
- Cracked Section Properties
- Pinned Base Restraints

ALTERNATE PATH METHOD

- Notional Lateral Load
 - 0.2% of Floor DL

SAP 2000 Model

0.03 Radians (LS)

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

PROPRESSIVE **C**OLLAPSE **D**ESIGN

- Occupancy Category IV
- Double Moment Capacity

RESULTING DESIGN

- Limit Aggregate Size

ENHANCED LOCAL RESISTANCE

First 2 Stories Above Grade

- 31" Deep Beams N S Direction
- 28" Deep Beams E W Direction

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

STRUCTURAL DESIGN SUMMARY

SLABS

- 8" Thick Concrete Typical Bottom Mat
- #6 @ 12″ O.C. N S ■ #6 @ 15" O.C. E – W

- Longitudinal Reinforcement
 - Varies #9, #10, #11
- Transverse Reinforcement ■ #4 @ 5″ O.C.
- 24" Wide

EDGE BEAMS

■ 28" – 31" Deep

COLUMNS

- 24" x 30" Exterior (12 #11 Bars)
- Interior Reinforcement Increases

COST COMPARISON

- Existing Structure
 - \$4,127,161
- All Concrete Structure
 - \$4,541,898
- Difference
 - \$414,737
- 8% Increase
 - Progressive collapse design
 - Edge beams
 - Result = \$448,000 Additional Structure Cost

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

- 35' Standoff Distance
- Small Car Bomb
 - 80 lb. TNT Equivalent

DESIGN GUIDES

- ASTM F2248-12
 - Equivalent 3s Blast Load
- E1300-12a
 - Glazing Design Tables

GLAZING **D**ESIGN

DESIGN PARAMETERS

RESULTS

- All glass heat strengthened
- Occupants Protected
- Thermal Performance Not Achieved
 - More heat gain in summer
 - More heat gain in winter

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- STRUCTURAL DEPTH
- BREADTH 1: SITE REDESIGN
- BREADTH 2: FAÇADE REDESIGN (GLAZING)
- RESULTS
- QUESTIONS

- Successful design of structure using reinforced concrete
- Meets requirements for OC IV Building
- Meets requirements of Department of Defense for progressive collapse
- Site safety increased, however not ideal
- Occupant safety increased
 Lost thermal performance

CONCLUSION

However, costs \$448,000 more

Image Provided By DCS Design

ACKNOWLEDGEMENTS

- AE Faculty
 - Dr. Boothby
 - Dr. Lepage
 - Professor Parfitt
- AE Graduate Students
 - David Tran
 - Ryan Solnosky
- Cagley & Associates
 - Frank Malits
 - Nehemias Iglesias
- Halle Companies
 - Rich Rounds
- DCS Design
 - Carmencita Calong
- My family, fiancée, and friends